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Abstract 

A minimum resolving set is a resolving set with the lowest cardinality and its 

cardinality is a dimension of connected graph 𝐺 = (𝑉, 𝐸), represented by 𝑑𝑖𝑚(𝐺). A 

dominating set 𝐷 is a set of vertices such that each 𝑣 of 𝐺 is either in 𝐷 or has at 

least one neighbor in 𝐷.  The dominance number of 𝐺 is the lowest cardinality of 

such a set. The lowest cardinality of the dominant resolving set is called a dominant 

metric dimension of 𝐺, represented by 𝐷𝑑𝑖𝑚(𝐺). This paper presents an algorithm 

for finding the domination resolving number of a graph. 
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I.   Introduction 

All of the graphs studied are simple, connected, undirected, and have a large 

number of edges but no loops. Because of its diverse and various applications in 

many fields like algorithmic designs, communications networks, social sciences, and 

many others, the investigation of dominance is regarded as the quickest-growing 

subject in the theory of graphs. Ayhan A. Khalil demonstrated in [I] the domination 

number for the web and helm graphs, whereas C.S. Nagabhushana et al. investigated 

in [XI] the domination number for the windmill and friendship graphs. The 

dominance number for the tadpole graph was proven by K. B. Murthy [XXI]. The 

dominance number for the book graph and stacked book graph was proved by B.N. 

Kavitha and Indrani Kelkar [X]. The domination number and the dominating set of 

graphs, like firecracker, coconut tree, banana tree, diamond snake, and fan graphs, 

were discussed by A. Sugumaran and E. Jayachandran in [II]. By using the term 

resolving domination number, R. C. Brigham et al. [XXV] merged the concepts of 

metric dimension and dominating set. Susilowati et al. [XXII] studied the dominant 
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metric dimension of a specific graph class and the dominant metric dimension of 

graph joint and comb products. The resolving independent domination number of fan, 

helm, friendship, cycle, and path graphs were presented by Mazidah et al. in 

[XXXVIII]. R. Alfarisi et al. [XXIV] studied and established sharp constraints of the 

resolving domination number of 𝐺 , as well as the exact value of various family 

graphs. Kurniawati et al. [XXVI] determined the resolving domination number of 

friendship graphs and its operation. F. Muhamad et al. [XII] proposed a computer 

program for determining the basis and dimension of a graph. For more results, see 

[III,IV,V,VI,VII,VIII,IX]. 

This paper is organized as follows: In Section 2, we introduce the basic concepts. In 

Section 3, some new propositions are explained. In Section 4, we present an 

algorithm for finding the dominant basis of a graph. Lastly, the conclusion of this 

work is depicted in Section 5. 

 

II.   Preliminaries 
 

In this section, we shall recall the most important elementary definitions and 

basic facts needed in our study later on. 

Definition 1. [XXVII] An open diagonal ladder 𝑂(𝐷𝐿𝑛) is obtained from a diagonal 

ladder graph by deleting the edges 𝑢𝑖𝑣𝑖, for 𝑖 = 1,2,3, … , 𝑛.   

Definition 2. [XXVII] Suppose that 𝐺 is a connected graph for which the ordered set 

�̅� ⊆ 𝑉(𝐺). The definition of the dominant metric dimension of 𝐺, which is denoted 

by 𝐷𝑑𝑖𝑚(𝐺), is given by 𝐷𝑑𝑖𝑚(𝐺) = 𝑚𝑖𝑛{|�̅�|: �̅� is the dominant resolving set of 

𝐺}. 

Lemma 1. [XIV,XXII] Let 𝐺 be a connected graph and 𝑆 ⊆ 𝑉(𝐺). If 𝑆 contains a 

resolving set of 𝐺, then 𝑆 is a resolving set of 𝐺.  

Proposition 1. [XXII]For a variety of well-known graph types, this proposition 

shows some results obtained from 𝛾(𝐺): 

1. For path 𝑃𝑛 and cycle 𝐶𝑛, (𝑃𝑛) = (𝐶𝑛) = ⌈𝑛/3⌉, (𝑃𝑛) = 1 and (𝐶𝑛) = 2. 

2.  For a complete graph 𝐾𝑛, (𝐾𝑛) = 1 and (𝐾𝑛) = 𝑛 − 1.  

3. For star 𝑆𝑛, (𝑆𝑛) = 1 and (𝑆𝑛) = 𝑛 − 2, for all 𝑛 ≥ 2.  

4. For complete bipartite graph 𝐾𝑚, 𝛾(𝐾𝑚, 𝑛) = 2 and  

𝑑𝑖𝑚(𝐾𝑚, 𝑛) = 𝑚 + 𝑛 − 2, 
    for every 𝑚, 𝑛 ≥ 2.                                         

 

III.   New Propositions 
 

In what follows, we present some new propositions that will be needed to 

establish the desired algorithm for determining the dominant basis of graphs: 

1.  If 𝐺 are (2, 𝑛) 𝐶4-snake and 4Δ𝑛-snake graph, then 

  𝛾𝑟(𝐺) =
4𝑛−4

5
, 𝑛 ≥ 1. 

2. If 𝐺 is 𝑍 − (𝑃𝑛) graph, then 𝛾𝑟(𝐺) =
𝑛

2
− 1.  
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3. If 𝐺 is globe graph 𝐺𝑙𝑛, then 𝛾𝑟(𝐺) = 𝑛 − 2. 

4. For chain silicate graph 𝐶𝑆𝑛, 𝛾𝑟(𝐶𝑆𝑛)=
𝑛+5

3
 , for 𝑛 ≥ 4. 

5. For bistar graph 𝐵3,𝑛, 𝛾𝑟(𝐵3,𝑛) = 𝑛 − 2, for 𝑛 ≥ 2. 

IV.    Algorithm to Determine Dominant Basis of Graph 

The suggested algorithm consists of three steps: the first measures the 

distance between two vertices, the second establishes the graph's basis, and the third 

is involved in verifying the dominant basis of the under-consideration graph.   

In the first step of the algorithm is to compute the distance between two vertices 𝑖 and 

𝑗 in graph 𝐺 of order 𝑛, choose a vertex 𝑖 as a beginning vertex, and a vertex 𝑗 as a 

destination vertex. Using 𝑊 = {{𝑦1}|𝑦1 ∈ 𝑉(𝐺)}  to describe the collection of all 

singleton subsets of 𝐺, examine each vertex's representation concerning {𝑦1}. If no 

two vertices in 𝑉(𝐺) have the same representation concerning {𝑦1}, the procedure is 

finished. If there are two vertices in 𝑉(𝐺) have the same representation about {𝑦1}, 

then build the new set 𝑊 = {{𝑦1, 𝑦2}|𝑦1, 𝑦2 ∈ 𝑉(𝐺)}, the process will be continued 

until we get 𝑊 = {{𝑦1, 𝑦2, ⋯ , 𝑦𝑗}|𝑦𝑖 ∈ 𝑉(𝐺), 1 ≤ 𝑖 ≤ 𝑗 , while there are no two 

vertices in 𝑉(𝐺)  have the same representation with regard to {𝑦1, 𝑦2, ⋯ , 𝑦𝑗}  and 

check whether it is a dominating set. So we can declare {𝑦1, 𝑦2, ⋯ , 𝑦𝑗}  as the 

dominant basis of the graph with |{𝑦1, 𝑦2, ⋯ , 𝑦𝑗}| as the value of the dominant metric 

dimension graph.   

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  
Algorithm (Generating Dominant Basis of a Graph)   

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  
Input: Adjacency matrix  𝐴[𝑖, 𝑗], Distance matrix.    
Output: Checking minimum dominant basis of graph. 

1.   Set 𝑛 are the order of the graph  

2.   For 𝑋 = 1 to 𝑛 do 

3.   Set 𝛽 as a collection of all subsets of 𝐺 with |𝑋| = 𝑞, 𝑋 ∈ 𝛽   

4.   For 𝑋 in 𝛽 do 

5.   If there are no two vertices have the same representation concerning 𝑋  

6.   Set 𝑋  as the basis and 𝑞 as the metric dimension  

7.   Count= 𝑋 

8.   For 𝑖 = 1 to 𝑛 do  

9.    If 𝑋[𝑖] = 1 

10.  For 𝑗 = 𝑖 + 1 to 𝑛 do 

11.  If 𝑋[𝑗] = 0 

12.  Count[𝑗] = Count[𝑗] + 𝐴[𝑖, 𝑗] 
13.  End if 

14.  End for 

15.  Flag =∏(𝑐𝑜𝑢𝑛𝑡 > 0)  

16.  If Flag = 1 

17. Print-dominated basis of graph 

18.  Exit.  
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ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  

V.    Conclusion 
 

Metric dimension has several applications in robot navigation, network 

discovery, and verification, application to wireless sensor network localization, image 

processing, and combinatorial optimization. In this paper, we presented an algorithm 

for finding the dominant basis of the graph, which can be merged with many recent 

contributions found in references [XV,XVI,XVIII,XIX] and applied to many 

applications such as applications discussed in references [XIII,XVII,XX]. 
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